Cell-selective biomaterials, i.e. favoring the functions of gingival cells and simultaneously reducing the adhesion of pathogenic bacteria, is highly desired in dental implants. However, due to the same mechanisms shared in attachment by mammalian and microbial cells, it is hard to increase the functions of the former while acting against the latter. Herein, a cell-selectivity was established on titanium oxide coatings by combining a plasma immersion ion implantation & deposition (PIII) and a UV pre-illumination. The titanium oxide coatings were produced on pure titanium substrates by using a plasma electrolytic oxidation technique and then doped of hafnium (Hf) by using a cathodic arc sourced PIII. The Hf-doped titanium oxide coatings (Hf-PIII groups) were capable of delaying the recombination of UV-illumination generated electron-hole pairs, which decreased the adhesion of bacterial cells at the later period (cultured for 24 h). Titanium oxide coating doped of 4.87 at.% hafnium (Hf) gained the biggest decrease (decreased 52.9% compared to its UV negative counterparts) in bacterial adhesion among the UV positive (UV+) groups. This study demonstrates that coupling Hf-doping and UV pre-illumination is promising for improving the cell-selective performance of titanium-based dental implants.
Read full abstract