Effects of duty ratio of a unipolar microsecond-pulsed helium atmospheric-pressure plasma jet (APPJ) on liquid- and polymer-surface treatments were investigated. In addition, changes in the plasma plume length, gas temperature, excitation temperature, discharge current, absorption power, and optical emission spectra were examined by varying the other operating parameters, such as applied voltage and additive flow of oxygen or water vapor. As an example of liquid sample, de-ionized water (DW) was exposed to an APPJ, and the concentrations of the reactive species generated in the DW were measured as functions of the operating parameters. Polycarbonate, polypropylene, and polymethylmethacrylate were employed as exemplary substrate materials to investigate the effect of plasma treatment on polymeric surfaces. The APPJ treatment increased the surface energy and changed the wetting characteristics of the surface from hydrophobic to hydrophilic. X-ray photoelectron spectroscopy results showed that a short-time plasma treatment with He and/or He/O2, He/H2O affects the surface wettability owing to the introduction of polar groups.
Read full abstract