Abstract. The profile of intense high-altitude electric fields on auroral field lines has been studied using Cluster data. A total of 41 events with mapped electric field magnitudes in the range between 0.5–1 V/m were examined, 27 of which were co-located with a plasma boundary, defined by gradients in particle flux, plasma density and plasma temperature. Monopolar electric field profiles were observed in 11 and bipolar electric field profiles in 16 of these boundary-associated electric field events. Of the monopolar fields, all but one occurred at the polar cap boundary in the late evening and midnight sectors, and the electric fields were typically directed equatorward, whereas the bipolar fields all occurred at plasma boundaries clearly within the plasma sheet. These results support the prediction by Marklund et al. (2004), that the electric field profile depends on whether plasma populations, able to support intense field-aligned currents and closure by Pedersen currents, exist on both sides, or one side only, of the boundary.