An experiment was conducted to determine the effects of supplementing rumen-protected arginine (RPA) on productive performance in dairy cows. One-hundred and 2 cows were blocked by parity and then by energy-corrected milk (ECM) yield. Within block, cows were randomly assigned to control (CON) that received 200 g/d of a mixture of hydrogenated soybean oil and heat-treated soybean meal to supply 30 g of metabolizable protein (MP), or 200 g/d of a product containing 30 g of metabolizable arginine (RPA), which increased the dietary arginine from 5.7 to 7.5% of the MP from 250 d of gestation to 21 d postpartum. After 21 d postpartum, cows were fed the same diet and data were collected until 84 d postpartum. Cows fed RPA produced an additional 2.5 kg of colostrum (5.3 vs. 7.8 ± 1.0 kg) and 220 g more immunoglobulin G (526 vs. 746 ± 93 g) than CON cows. Supplementing RPA increased the yields of milk (32.8 vs. 34.9 ± 1.0 kg/d), ECM (37.8 vs. 40.9 ± 1.2 kg/d), and milk total solids (4.48 vs. 4.86 ± 0.14 kg/d) in the first 21 DIM. The benefits of RPA extended beyond the period of supplementation, with a 6.4% increase in yield of ECM per kg of dry matter consumed in all cows (1.88 vs. 2.00 ± 0.05 kg/kg) and an increase in ECM yield, but only in parous cows (44.2 vs. 48.5 ± 1.5 kg/d). Feeding RPA increased the concentrations of urea N in plasma pre- (12.5 vs. 13.9 ± 0.4 mg/dL) and postpartum (11.6 vs. 13.2 ± 0.4 mg/dL), and in milk during the first 21 d postpartum (11.0 vs. 12.0 ± 0.3 mg/dL). Treatment did not affect the concentrations of AA in plasma prepartum, but feeding RPA tended to increase citrulline (72.5 vs. 77.5 ± 2.7 μM), whereas RPA either tended to decrease isoleucine (129.5 vs. 120.9 ± 5.7 μM) or decreased the concentrations of leucine (181.3 vs. 170.2 ± 6.4 μM) and valine (293.2 vs. 276.7 ± 10.4 μM) postpartum. Feeding RPA increased the relative expression of transcripts involved in AA transport (SLC38A4), urea cycle (ARG1), and gluconeogenesis (PC, PEPCK, and G6PC) in hepatic tissue. Feeding diets to supply additional arginine as RPA during the transition period benefited productive performance in dairy cows that extended beyond the period of supplementation despite minor changes in plasma AA concentrations.