While the nanotoxic effects on plants have been extensively studied, the underlying mechanisms of plant defense responses and resistance to nanostress remain insufficiently understood. Particularly, Prussian blue nanoparticles (PB NPs) have been extensively used in pigments, pharmaceuticals, electrocatalysis, biosensors and energy storage. However, the impact of PB NPs on plants’ health and growth are largely unknown. Herein, the phytotoxicity of PB NPs to rice and trace the uptake, accumulation and biotransformation of PB NPs was explored, along with the underlying defence mechanisms. The results showed that PB NPs (≥ 50 mg L–1) significantly inhibited the growth of rice seedling up to 16.16%, 27.80%, and 29.37% in plant height, shoot biomass and root biomass, respectively. The X-ray spectroscopic studies and in vivo elemental and particle-imaging demonstrated that PB NPs were transported through the cortex via xylem from root to shoot. However, most of the PB NPs and their transformation products were retained in the root, where they were blocked owing to root cell wall (RCW) remodelling, and 81.4%-83.4% of Fe accumulated in the RCW compared to 66.6% in the control. Specifically, PB NPs stimulated pectin methylesterase activity by promoting hydrogen peroxide production to participate in RCW remodeling. More interestingly, Si was specifically regulated to covalently bind to hemicellulose to form the Si-hemicellulose complex that strongly bound with PB NPs during RCW remodeling, resulting in the strong defense against PB NPs. These findings provide new insights into the phytotoxicity of artificial NPs and the defense mechanisms of plants.
Read full abstract