Vesicular trafficking and membrane fusion are integral to cell growth and development with SNARE proteins, RabGTPases and their associates implicated in membrane fusion and secretion throughout the plant endomembrane system. Although the overall pattern of function is similar to that of animals and yeast, many aspects of endomembrane organization and vesicle trafficking appear unique to plants, for example, the control of cell and vacuolar expansion, asymmetric growth and cell division. However, the dominant membrane trafficking pathways have yet to be defined. Comparative genomics provide important information about vesicle trafficking elements but assigning biological roles based on sequence similarities is extremely difficult. Cellular and genetic approaches are reviewed here that have allowed visualization of vesicle trafficking in plants, including capacitance and dye methods, imaging and marker techniques, protein interactions and reverse genetics. Stomatal guard cells are discussed as cell models for identifying vesicle trafficking pathways and evidence points to a role for vesicle trafficking in stomatal function. For plants generally, kinetic analyses and biochemical studies suggest that several different pools of vesicles, and possibly different mechanisms for delivery, are available for vesicle traffic between endomembrane compartments and the plasma membrane. Characterizing these pathways, their functions and controls provides a major challenge for the future.