Samples returned from the surface of planetary bodies are both complementary to orbital and in situ observations and provide a unique perspective for understanding the nature and evolution of that body. This unique perspective is based on the scale the sample is viewed (mm–Å), the ability to manipulate the sample, the capability to analyze the sample at high precision and accuracy, and the ability to significantly modify experiments as logic and technology dictates over an extended period of time (decades). Unlike the Apollo missions, robotic sample return missions in the next decade will result in the return of relatively small sample mass. Such robotically returned samples are scientifically more valuable if they can be placed within a planetary context through orbital observations and if information concerning planetary-scale processes and conditions can be extracted from them. Conversely, samples give remotely sensed data ground truth. That is, they act as a “calibration standard” for these data allowing a much enhanced global view to be constructed. The Moon is an example that illustrates how information can be extracted from small samples and then extended to planetary and solar system scales. Three examples from the Moon illustrate this point. First, multi-analytical and experimental studies of minute (10–500 μm) glass beads representing near-primary magmas provide constraints on the composition and condition of the lunar mantle, the style of early planetary differentiation, the history and character of early mantle dynamics and melting, and the isolation of the lunar mantle from late-stages of lunar accretion. Second, trace element analysis of individual mineral grains via ion microprobe and isotopic analysis of small rock fragments representing some of the oldest and youngest periods of lunar magmatism illustrate their usefulness for both fingerprinting distinct episodes of lunar magmatism and reconstructing the evolution of lunar magmatism. Third, mechanisms for primitive planetary mantles degassing and volatile transport on airless bodies can be understood by the analysis of volatile coatings on glass and mineral fragments in the lunar regolith. As many of our insights about the Moon are based on samples that primarily were collected within a limited lunar terrain, our understanding of the Moon is somewhat biased. Future scientifically strategic sampling targets are young mare basalts (Roris basalt in Oceanus Procellarum), far-side mare basalts (Mare Moscoviense), large pyroclastic deposits and potential mantle xenoliths (Aristarchus plateau, Rima Bode) major unsampled crustal lithologies outside the Procellarum KREEP terrane (central peak in Tsiolkovsky crater, South-pole Aitken basin), basin and crater melt sheets (South-pole Aitken basin, Giordano Bruno) and H deposits in permanently shaded areas (South-pole Aitken basin). Sampling these locations would further our understanding of processes at work during the early evolution of the terrestrial planets, provide a comprehensive history of endogenous (e.g., primary volcanic degassing) and exogenous (e.g., solar wind, galactic cosmic rays, volatiles from comets) volatile reservoirs and volatile transport and would provide unique historical information about events and processes that affected the entire inner solar system, a record obscured on the Earth and Mars.
Read full abstract