A sufficiently accurate, yet computationally efficient prediction of temperature field is essential for design of spacecraft structures. This paper presents a model dimension reduction method for thermal analysis of thin-walled circular tubes in space environment, which takes into account radiation heat transfer among the internal surfaces besides heat conduction along the circumferential direction and radiative emission from the external surface. Temperature distribution on the tube cross section is approximated by a series of harmonic functions, so that a one-dimensional problem is reduced to that of zero dimension. The relation between average and perturbation temperatures that depend only on time is broadened to fully coupled one. By comparison to the previous model and the plane finite element model, the accuracy and economy of the new model are illustrated. The results show that internal radiation exchange plays an important role in thermal analysis of thin-walled circular tubes used extensively in spacecraft appendages. Furthermore, differences between present and previous models are analyzed and a two-way analysis of variance is performed to determine the effect of various physical and geometric parameters on the temperature distribution and response of the tubes. The work can be further developed to analyze thermally induced deformation and vibration of spacecraft structures.
Read full abstract