We construct a generalised notion of Kac-Moody algebras using smooth maps from the non-compact manifolds M= SL(2,R) and M= SL(2,R)/U(1) to a finite-dimensional simple Lie group G. This construction is achieved through two equivalent ways: by means of the Plancherel Theorem and by identifying a Hilbert basis within L2(M). We analyze the existence of central extensions and identify those in duality with Hermitean operators on M. By inspecting the Clebsch–Gordan coefficients of sl(2,R), we derive the Lie brackets characterising the corresponding generalised Kac-Moody algebras. The root structure of these algebras is identified, and it is shown that an infinite number of simultaneously commuting operators can be defined. Furthermore, we briefly touch upon applications of these algebras within the realm of supergravity, particularly in scenarios where the scalar fields coordinatize the non-compact manifold SL(2,R)/U(1).