Three-dimensional strain sensing inside a structure is not feasible with conventional strain sensing techniques such as electrical strain gauges, which are limited to surface measurements. Three-dimensional strain measurement inside a structure would find uses in a variety of new applications: enhanced understanding and detection of composite failure modes, such as delamination; sensing for adaptive structural control; intelligent vehicle highway systems; and structural health monitoring systems for civil structures. The latter application could involve remotely monitoring structural integrity during and after an earthquake, for example. A fiber-optic strain sensor array (FOSSA) in a planar, patch-like configuration was developed, and accurate measurement of the three principal strains inside a simple structure was demonstrated. The planar configuration was chosen to avoid the difficulty and structural degradation of embedding optical sensors in three planes. Two extrinsic Fabry-Perot interferometric (EFPI) sensors and one polari-metric sensor form the planar sensor array. The two EFPI sensors were placed perpendicular to each other in the sensor plane to extract the two normal strain components along the x and y axes. The polarimetric sensor embedded in the plane was used to extract the third normal strain acting on the z axis. The sensor array was embedded in an epoxy resin cube and loaded to 454 kg (1,000 1b) with a loading machine. The strains that were measured correlated well with the external strains measured with surface-bonded electrical strain gauges. The variation in measured strain between the two sensor systems was less than 4 percent for all three principal axes.
Read full abstract