The applications of lightweight planar parallel robotic manipulators are increasing enormously because of its various desirable characteristics such as low weight, lower inertia and higher stiffness. Higher accelerations and accuracies can be achieved in planar parallel manipulators. Also, shape memory alloy restoration technique (SMART)-based linear actuators are replacing huge and bulky linear actuators. This study presents the kinematic design of smart linearly actuated family of U-shape base planar parallel robotic manipulator. With the aid of solid modelling software, different available configurations were modelled and their workspace was analysed. The developed 3-DOF motion stages (18 unique configurations) were fabricated using fused deposition modelling process, and the top three configurations having higher workspace were further experimented. It is interesting to observe that the actual or experimental workspace of a particular manipulator configuration is further minimised from the predicted or feasible workspace. It is due to the presence of passive links, singularities, friction between the parts, heat dissipation, force distribution, stiffness, etc. The present study depicts the experimental workspace of the top three configurations, namely PPR-PRP-PRR, PRP-PPR-PRP and PRP-PPR-PRR. Since none of the experimental workspace observed is equal or higher than the model workspace, an efficiency loss in terms of workspace reduction was calculated to understand the acceptability of the configurations in different domains. Apart from the loss, the result disclosed that the actual workspace of all the manipulators was within the feasible workspace domain of mobile platform. The PPR-PRP-PRR manipulator was found to possess highest experimental workspace than other configurations. Note: P, P, and R refer to active prismatic, passive prismatic and passive revolute joints respectively.
Read full abstract