The collective electronic excitation in planar sodium clusters is studied by time-dependent density functional theory calculations. The formation and development of the resonances in photoabsorption spectra are investigated in terms of the shape and size of the two-dimensional (2D) systems. The nature of these resonances is revealed by the frequency-resolved induced charge densities present on a real-space grid. For long double chains, the excitation is similar to that in long single atomic chains, showing longitudinal modes, end and central transverse modes. However, for 2D planes consisting of (n × n) atoms with n being up to 16, new 2D characteristic modes emerge regardless of the symmetries considered. For in-plane excitations, besides the equivalent end mode, mixed modes with contrary polarity occur. The relation between the frequency of the primary modes and the system size is similar to the case of a 2D electron gas but with a correction due to the realistic atomic structure. For excitations perpendicular to the plane there are corner, side center, bulk center, and circuit modes. Our calculation reveals the importance of dimensionality for plasmon excitation and how it evolves from 1D to 2D.
Read full abstract