A classical planar problem in forward flexible multibody dynamics is thoroughly investigated. The system consists of a damped flexible beam cantilevered to a rigid translating cart. The problem is solved using three distinctly different conventional approaches presented in roughly the chronological order in which they have been applied to flexible dynamic systems. First, a modal superposition formulation based on Bernoulli-Euler beam theory is developed. Second, an alternative solution is developed drawing exclusively on methods for rigid body dynamics combined with a knowledge of the theoretical modal behaviour of continuous beams. Third, a formulation based on the conventional finite element method using four-degree-of-freedom planar beam elements is adapted to include the rigid body motion of the cart. The relative merits of the three formulations are discussed and numerical simulation results generated using each of the three formulations are compared with each other and with a solution from a general-purpose flexible multibody dynamics formulation that is briefly outlined. The relative accuracy and efficiency of the methods and the challenges associated with generalizing each formulation are discussed.