AbstractTo reduce phenomenon of abandoning wind and photovoltaic power, improve the limitations of traditional methods in dealing with uncertainty of wind and photovoltaic power and system planning, and improve the optimal configuration of resources, an optimal capacity configuration of joint system considering uncertainty of wind and photovoltaic power and demand response is proposed. Firstly, using probability distribution information of wind and photovoltaic power output, the distance between actual probability distribution and forecast probability distribution is constrained based on the 1‐norm and ∞‐norm. A fuzzy set considering uncertainty probability distribution is constructed, and a two‐stage distributed robust planning model is established. The first stage involves optimizing joint system capacity for scenarios with the lowest probability of wind and photovoltaic power; the second stage builds on capacity optimization scheme from the first stage and aims to minimize operating costs through simulation optimization. Secondly, column and constraint generation is used to solve the model. Finally, constructing an example based on actual data from a power grid in Northeast China for simulation and analysis, the results show that the method achieves a balanced optimization of robustness and economy, effectively reduces carbon emissions and improves ability of the system to consume wind and photovoltaic power.
Read full abstract