Abstract
With the widespread application of deep learning technology in various fields, power load forecasting, as an important link in power system operation and planning, has also ushered in new opportunities and challenges. Traditional forecasting methods perform poorly when faced with the high uncertainty and complexity of power loads. In view of this, this paper proposes a power load forecasting model PSO-BiTC based on deep learning and particle swarm optimization. This model combines a temporal convolutional network (TCN) and a bidirectional long short-term memory network (BiLSTM), using TCN to process long sequence data and capture features and patterns in time series, while using BiLSTM to capture long-term and short-term dependencies. In addition, the particle swarm optimization algorithm (PSO) is used to optimize model parameters to improve the model's predictive performance and generalization ability. Experimental results show that the PSO-BiTC model performs well in power load forecasting. Compared with traditional methods, this model reduces the MAE (Mean Absolute Error) to 20.18, 17.57, 18.61 and 16.7 on four extensive data sets, respectively. It has been proven that it achieves the best performance in various indicators, with a low number of parameters and training time. This research is of great significance for improving the operating efficiency of the power system, optimizing resource allocation, and promoting carbon emission reduction goals in the urban building sector.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.