Neospora caninum is a protozoan parasite which can infect a range of animals, including dogs, cattle, and sheep. Bovine neosporosis, which mainly causes abortion in cattle, results in substantial economic losses worldwide. To study the effects of N. caninum infection on the placenta, a pregnant mouse model for N. caninum infection was established. The litter size (8.6 ± 1.5) and the number of live pups (6.4 ± 1.8) of infected dams were significantly lower compared with those of non-infected dams. Trophoblast cell shrinkage and a large number of apoptosomes were detected in the placentas of the infected group. The parasite load in the placental tissue was significantly higher with time after infection. Likewise, apoptosis of placental trophoblast cells significantly increased with time after infection. Among the 66 apoptotic genes detected in this study, eight genes, including Bcl-2, were significantly differentially expressed by about > tenfold in infected and uninfected mice. The expression of BAX and tumor necrosis factor-alpha (TNF-α) was upregulated in the placental cells of the infected mice, whereas the expression of BCL-2 was downregulated. Enzyme-linked immunosorbent assays (ELISAs) showed that apoptotic protease caspase-3 level was significantly increased in placental cell suspension, and insulin-like growth factor (IGF)-2 level was significantly reduced. Acetylcholine (ACH) and placental prolactin (PL) levels were initially decreased but eventually increased. In summary, infection of mice with N. caninum caused apoptotic damage to the placental tissues, cells, and genes and affected the normal physiological functions of placenta, which may largely explain the adverse pregnancy outcomes caused by N. caninum infection in mice.
Read full abstract