Growth hormone (GH) secreting pituitary adenomas are the main cause of acromegaly. Somatostatin analogs are the gold standard of medical therapy; however, resistance represents a big drawback in acromegaly management. We recently demonstrated that benzene (BZ) modifies the aggressiveness of GH-secreting rat pituitary adenoma cells (GH3), increasing GH secretion and altering the synthesis of molecules involved in the somatostatin signaling pathway. Based on these pieces of evidence, this study aimed to evaluate the effects of BZ on octreotide (OCT) efficacy in GH-secreting adenoma cells. In GH3 cells, BZ counteracted the anti-proliferative action of OCT. GH gene expression, unmodified by OCT, remained high in BZ-treated cells as well as after treatment with the association of both. GH secretion, reduced by OCT, was increased after treatment with BZ alone or when the pollutant was used with OCT. The combination of BZ and OCT greatly reduced the gene expression of ZAC1 and SSTR2; and this reduction was also present at a protein level. BZ caused an increase in the protein level of the transcription factor STAT3 and in its phosphorylated form. In the presence of BZ, OCT lost the ability to reduce the phosphorylated protein levels. Finally, in primary cultures of human pituitary adenoma cells, BZ caused an increase in GH secretion. OCT decreased GH secretion, but the addition of BZ reversed the OCT effect. In conclusion, our results suggest that BZ may have an important role in the resistance of pituitary adenomas to the pharmacological treatment with somatostatin analogs.
Read full abstract