Recent years have seen a growing debate concerning the function of the cerebellum. We have proposed that the cerebellum may be more involved in sensory than motor function, and have specifically predicted that its activity should be particularly enhanced during sensory discrimination tasks. Consistent with this hypothesis we have previously shown using functional Magnetic Resonance Imaging (fMRI) that ‘finger’ regions of the human cerebellum are more active during tactile discrimination tasks than during finger movement alone [1]. In this report we extend our investigation to the auditory system using PET. Auditory studies remove the confound of movement inherent in studies of other sensory systems, including the somatosensory system. Two previous PET studies have shown patterns of cerebellar activations associated to the discrimination of sound intensity and duration [2,3]. Here we test our hypothesis using a pitch discrimination task.
Read full abstract