Levonadifloxacin is a parenteral anti-MRSA benzoquinolizine antibacterial drug recently launched as, EMROK in India to treat acute bacterial skin and skin structure infections (ABSSSI) in hospitalized patients. As a step down therapy an oral form of levonadifloxacin with comparable PK/PD was needed because the levonadifloxacin exhibits very poor oral absorption. To improve the drugability in terms of oral absorption a pro-drug approach was evaluated. Structurally levonadifloxacin provides two sites amenable for ester or amide formation, a carboxyl function of benzoquinolizine pharmacophore and hydroxyl group on piperidine side chain. Several aliphatic, aromatic and amino acid esters of C-2 carboxylic acid, C-4-hydroxyl piperidine and double esters at both C-2, C-4 positions were synthesized. The cleavage of prodrugs was studied in vitro as well as in animal models to access their suitability as prodrug function. Among C-2 carboxylic ester prodrugs, daloxate (WCK 2320) showed highest cleavage in serum as well as in liver enzyme; however its stability in aqueous solution was unfavorable. In contrast, most of the esters at the hydroxyl group like propionyl ester (WCK 2305) and amino acid esters such as l-alanine (WCK 2349), l-valine (WCK 2630) were cleaved readily releasing active drug. Thus, indicating C-4-hydroxyl piperidine was amenable site for enzymatic cleavage over esters of C-2 carboxylic acid. Additionally, amino acid esters provided an opportunity to make salt, facilitating improved aqueous solubility. Methanesulfonate salt of l-alanine ester of levonadifloxacin (WCK 2349) was successfully developed and launched as oral prodrug alalevonadifloxacin (EMROK-O).
Read full abstract