Summary Flow pattern, pressure drop, and water holdup were measured for oil/water flow in horizontal, hilly terrain (±0.5 and ±3°), and vertical pipelines at a temperature of approximately 35 (±5) °C and a pressure of approximately 245 kPa using the large-scale multiphase-flow test facility of Japan Oil, Gas and Metals Natl. Corp. (JOGMEC). Test lines of 4.19-in. (106.4-mm) inner diameter (ID) and 120-m total length were used, which included a 40-m horizontal or hilly terrain (near-horizontal) and a 10-m vertical test section sequentially connected. The flow pattern was determined by visual observation with video recordings, and a flow-pattern map was made for each condition. New flow patterns were identified for horizontal and hilly terrain flow such as oil flow in a snake-like shape at top of pipe at high rate of water flow and water flow at bottom of pipe at high rate of oil flow. New holdup and pressure-drop data are presented for each flow condition. Flow rate and inclination angle influence holdup and pressure-drop behaviors. In vertical flow, when the oil superficial velocity exceeds a certain value, the pressure drop decreases exponentially as the superficial oil velocity, vSO, increases. Slippage between the phases was analyzed using the measured water holdup plotted against the input water cut with inlet-oil flow rate as a parameter and slip velocity vs. measured water holdup. It was found that the slippage changed significantly with slight changes in inclination angle. This paper provides new experimental data of flow pattern, water holdup, and pressure drop measured particularly at horizontal, hilly terrain, and vertical conditions, with large-diameter pipes. This is indispensable information for developing reliable prediction models for oil/water two-phase and gas/oil/water three-phase flow in pipelines.
Read full abstract