The most important unanswered questions in turbulence regard the nature of turbulent flow in the limit of infinite Reynolds number. The Princeton superpipe (PSP) data comprise 26 velocity profiles that cover three orders of magnitude in the Reynolds number from $Re=19\,639$, to $Re=20\,088\,000$ based on pipe radius and pipe centreline velocity. In this paper classical mixing length theory is combined with a new mixing length model of the turbulent shear stress to solve the streamwise momentum equation and the solution is used to approximate the PSP velocity profiles. The model velocity profile is uniformly valid from the wall to the pipe centreline and comprises five free parameters that are selected through a minimization process to provide an accurate approximation to each of the 26 profiles. The model profile is grounded in the momentum equation and allows the velocity derivative, Reynolds shear stress and turbulent kinetic energy production to be studied. The results support the conclusion that logarithmic velocity behaviour near the wall is not present in the data below a pipe Reynolds number somewhere between $Re=59\,872$, and $Re=87\,150$. Above $Re=87\,150$, the data show a very clear, nearly logarithmic, region. But even at the highest Reynolds numbers there is still a weak algebraic dependence of the intermediate portion of the velocity profile on both the near-wall and outer flow length scales. One of the five parameters in the model profile is equivalent to the well-known Kármán constant, $k$. The parameter $k$ increases almost monotonically from $k=0.4034$ at $Re=87\,150$ to $k=0.4190$ at $Re=20\,088\,000$, with an average value, $k=0.4092$. The variation of the remaining four model parameters is relatively small and, with all five parameters fixed at average values, the model profile reproduces the entire velocity data set and the wall friction reasonably well. With optimal values of the parameters used for each model profile, the fit to the PSP survey data is very good. Transforming the model velocity profile using the group, $u/u_{0}\rightarrow ku/u_{0}$, $y^{+}\rightarrow ky^{+}$ and $R_{\unicode[STIX]{x1D70F}}\rightarrow kR_{\unicode[STIX]{x1D70F}}$ where $R_{\unicode[STIX]{x1D70F}}$ is the friction Reynolds number, leads to a reduced expression for the velocity profile. When the reduced profile is cast in outer variables, the physical velocity profile is expressed in terms of $\ln (y/\unicode[STIX]{x1D6FF})$ and a new shape function $\unicode[STIX]{x1D719}(y/\unicode[STIX]{x1D6FF})$. In the limit of infinite Reynolds number, the velocity profile asymptotes to plug flow with a vanishingly thin viscous wall layer and a continuous derivative everywhere. The shape function evaluated at the pipe centreline is used to produce a new friction law with an additive constant that depends on the Kármán constant and a wall damping length scale.