Prescribed fire is increasingly utilized for conservation and restoration goals, yet there is limited empirical evidence supporting its effectiveness in reducing wildfire-induced damages to highly valued resources and assets (HVRAs)—whether natural, cultural, or economic. This study evaluates the efficacy of prescribed fire in reducing wildfire severity to LANDFIRE-defined vegetation classes and HVRAs impacted by the 2017 West Mims event, which burned across both prescribed-fire treated and untreated areas within the Okefenokee National Wildlife Refuge. Wildfire severity was quantified using the differenced normalized burn ratio (dNBR) index, while treatment records were used to calculate the prescribed frequency and post-treatment duration, which is defined as the time elapsed between the last treatment and the West Mims event. A generalized additive model (GAM) was fit to model dNBR as a function of post-treatment duration, fire frequency, and vegetation type. Although dNBR exhibited considerable heterogeneity both within and between HVRAs and vegetation classes, areas treated with prescribed fire demonstrated substantial reductions in burn severity. The beneficial effects of prescribed fire were most pronounced within approximately two years post-treatment with up to an 88% reduction in mean wildfire severity. However, reductions remained evident for approximately five years post-treatment according to our model. The mitigating effect of prescribed fire was most pronounced in Introduced Upland Vegetation-Shrub, Eastern Floodplain Forests, and Longleaf Pine Woodland when the post-treatment duration was within 12 months. Similar trends were observed in areas surrounding red-cockaded woodpecker nesting sites, which is an HVRA of significant ecological importance. Our findings support the frequent application of prescribed fire (e.g., one- to two-year intervals) as an effective strategy for mitigating wildfire severity to HVRAs.
Read full abstract