The impact of enzyme-assisted (EAE), microwave-assisted (MAE), and microwave enzyme-assisted (MEAE) extractions using water were evaluated and compared to aqueous (AEP), conventional ethanolic (CSE), and microwave ethanolic (MSE) controls for the release of phenolics from Cabernet Sauvignon grape pomace. Optimization of extract total phenolic content (TPC) involved stepwise screening of time, temperature, slurry pH, solids-to-liquid ratio, and enzyme conditions. The use of 0.1 % alkaline protease in MEAE (1:10 g pomace/mL water, pH 11.5, 70 °C, 30 min) reduced extraction time by 50 % compared to AEP, EAE, and CSE methods, doubling the TPC of the extracts to 100.9 mg GAE/g dry weight pomace compared to ethanolic extractions. MAE and MEAE extracts exhibited in vitro antioxidant activities (ABTS and ORAC) similar to ethanolic extracts and had greater antioxidant activities than AEP/EAE extracts while boosting relative contents of catechins, procyanidins, trans-piceid, and malvidin-3,5-diglucoside as detected by untargeted metabolomics. Quantitation by HPLC showed increased levels of gallic acid, protocatechuic acid, syringic acid, p-coumaric acid, polymeric phenols, and polymeric pigments in MEAE compared to hydroethanolic methods. Scanning electron microscopy further supported the synergistic role of microwave processing and proteolysis in disrupting the grape cell structure to aid in releasing valuable bioactive phenolic compounds.
Read full abstract