Fiber-reinforced polymer (FRP) strengthening systems have been considered an effective technique to retrofit concrete structures, and their use nowadays is more and more extensive. Externally bonded reinforcement (EBR) and near-surface mounted (NSM) technologies are the two most widely recognized and applied FRP strengthening methods for enhancing structural performance worldwide. However, one of the main disadvantages of both approaches is a possible brittle failure mode provided by a sudden debonding of the FRP. Therefore, methodologies able to monitor the long-term efficiency of this kind of strengthening constitute a challenge to be overcome. In this work, two reinforced concrete (RC) specimens strengthened with FRP and subjected to increasing load tests were monitored. One specimen was strengthened using the EBR method, while for the other, the NSM technique was used. The multiple cracks emanating in both specimens in the static tests, as possible origins of a future debonding failure, were monitored using a piezoelectric (PZT)-transducer-based electromechanical impedance (EMI) technique and a digital image correlation (DIC) system. Clustering approaches based on impedance measurements of the healthy and damaged states of the specimens allowed us to suspect the occurrence of cracks and their growth. The strain profiles captured in the images of the DIC system allowed us to depict surface hair-line cracks and their propagation. The combined implementation of the two techniques to look for correlations during incremental bending tests was addressed in this study as a means of improving the prediction of early cracks and potentially anticipating the complete failure of the strengthened specimens.
Read full abstract