Piezoelectric materials are widely used in the excitation of MHz frequency vibrations in devices for ultrasonic manipulation. An applied electrical voltage is transformed into mechanical stress, strain and displacement. Piezoelectric elements can be used in either a resonant or non-resonant manner. Depending on the desired motion the piezoelectric longitudinal, transverse or shear effects are exploited. Because of the coupling between electrical and mechanical quantities in the constitutive law the modelling of devices turns out to be quite complex. In this paper, the general equations that need to be used are delineated. For a one-dimensional actuator the underlying physics is described, including the consequences resulting for the characterization of devices. For a practical setup used in ultrasonic manipulation, finite element models are used to model the complete system, including piezoelectric excitation, solid motion and acoustic field. It is shown, how proper tailoring of transducer and electrodes allows selective excitation of desired modes.
Read full abstract