In recent years, piezoelectric composite materials have been widely used in the design of underwater anechoic coatings due to their adaptability to tuning parameters. However, there are also some shortcomings, such as a single dissipation mechanism, narrow bandwidth, and poor low-frequency sound absorption. This work proposes an acoustic composite structure combining piezoelectric composite materials with local resonance units, which effectively enhances the sound absorption performance of the structure through the coupling effect of the piezoelectric energy consumption mechanism and local resonance mechanism. Compared to conventional acoustic structures, the proposed acoustic composite structure not only has a strong low-frequency sound absorption effect but also enriches the mid-high frequency sound absorption modes by connecting shunt damping circuits. On this basis, the effect of piezoelectric parameters and resonator morphological properties on structural sound absorption performance is further investigated, and the results show that the designed structure has the characteristic of sound absorption performance that is tunable. In addition, key factors affecting the sound absorption performance of the structure have been optimized to achieve better broadband sound absorption performance. This work may provide valuable ideas for the development of low-frequency broadband adjustable underwater sound-absorbing coatings.
Read full abstract