A system of hydrostatic parameters is studied in novel 2–0–2 composites that contain two lead-free piezoelectric single-crystal components. The ferroelectric domain-engineered alkali niobate-tantalate-based single-crystal layer promotes large values of the piezoelectric coefficients [Formula: see text] and [Formula: see text], hydrostatic squared figure of merit [Formula: see text], and hydrostatic electromechanical coupling factor [Formula: see text] of the composite wherein the 0–3 Li2B4O7 single crystal/polyethylene layers are adjacent to the aforementioned single-crystal layer. Hereby, the role of the elastic anisotropy of the 0–3 layer is emphasized. An orientation effect concerned with rotations of the crystallographic axes of the piezoelectric Li2B4O7 single crystal in the 0–3 layer is first studied. It is shown that the orientation of the crystallographic axis [Formula: see text] of the Li2B4O7 single crystal in the polymer matrix strongly influences the piezoelectric properties and hydrostatic parameters of the composite. Examples of the so-called waterfall-like orientation dependences of the hydrostatic parameters are analyzed. The composite based on the domain-engineered [Lix([Formula: see text][Formula: see text]]([Formula: see text][Formula: see text]O3:Mn single crystal is of interest due to [Formula: see text][Formula: see text]mV[Formula: see text]m/N, [Formula: see text] Pa[Formula: see text], and [Formula: see text]–0.75 in the studied volume-fraction and orientation ranges, and these hydrostatic parameters are to be taken into account in the field of piezotechnical, hydroacoustic, and energy-harvesting applications.
Read full abstract