Prior knowledge of the dispersion curves and mode shapes of guided waves provides valuable information for wave mode selection and excitation in the field of non-destructive evaluation (NDE) and structural health monitoring (SHM). They are typically computed by the matrix methods, the finite element (FE) and semi-analytical finite element (SAFE) methods. However, the former is prone to numerical instability, and the latter two are limited by the refinement level of the FE mesh. In this paper, a semi-analytical wavelet finite element (SAWFE) method is presented to characterize wave propagation in rectangular rods. The piecewise polynomial interpolation functions of the SAFE method are replaced by two-dimensional scaling functions of the B-spline wavelet on the interval (BSWI). To demonstrate the accuracy of the proposed SAWFE technique, the propagation of guided waves in an aluminium plate is studied first. Then, the propagation of guided waves in rectangular rods of arbitrary aspect ratio is investigated. The results of this work clearly show that the SAWFE method presented here has higher accuracy and efficiency than the SAFE method.