Abstract
The numerical solution of integral equations or a system of integral equations (for a system of conductors) consists in their discretization and reduction to a system of linear algebraic equations for the desired function. For discretization, it is possible to use projection methods, for example, the Galerkin method or the collocation method. A system of linear algebraic equations for the class of problems under consideration is characterized by a complete (filled) complex matrix. For conductor antenna structures that are quite arbitrary in geometry and size, systems of linear algebraic equations turn out to be of a high order, and special computational algorithms are required to solve them. The purpose of the work is to study adequate mathematical models for wire antennas with a subsequent description of uniform numerical algorithms based on methods of sampling and approximation of antenna current. With this method, the error in solving integral equations is determined by the error in calculating the elements of the matrix of a system of linear algebraic equations for a given piecewise polynomial approximation of the solution at step h. If the quadrature formula for numerical integration is chosen, then there are two ways to reduce the solution error. An increase in the number of collocation points leads to a rapid increase in the volume of calculations and, consequently, to a rapid increase in the amount of occupied computer memory. Therefore, the question arises of choosing the most profitable method of piecewise polynomial interpolation and discretization step h from the point of view of using computer resources, ensuring an acceptable number of solutions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.