This paper is concerned with the \(H_\infty \) synchronization control problem for a class of chaotic systems with multiple delays in the presence of controller temporary failure. Based on the idea of switching, the synchronization error systems with controller temporary failure are modeled as a class of switched synchronization error systems. Then, a switching condition that incorporates the controller failure time is constructed by using piecewise Lyapunov functional and average dwell-time methods, such that the switched synchronization error systems are exponentially stable and satisfy a weighted \(H_\infty \) performance level. In the meantime, a switching state feedback \(H_\infty \) controller is derived by solving a set of linear matrix inequalities. More incisively, the obtained results can also be applied to the issue of aperiodically intermittent control. Finally, three simulation examples are employed to illustrate the effectiveness and potential of the proposed method.
Read full abstract