The use of summarized spectral data in bands obtained by hyperspectral sensors can make it possible to obtain biochemical information about seeds and, thus, relate the results to seed viability and vigor. Thus, the hypothesis of this work is based on the possibility of obtaining information about the physiological quality of seeds through hyperspectral bands and distinguishing seed lots regarding their quality through wavelengths. The objective was then to evaluate the possibility of differentiating soybean genotypes regarding the physiological quality of seeds using spectral data. The experiment was conducted during the 2021/2022 harvest at the Federal University of Mato Grosso do Sul in a randomized block design with four replicates and 10 F3 soybean populations (G1, G8, G12, G15, G19, G21, G24, G27, G31, and G36). After the maturation of each genotype, seeds were harvested from the central rows of each plot, which consisted of five one-meter rows. Seed samples from each experimental unit were placed in a Petri dish to collect spectral data. Readings were performed in the laboratory at a temperature of 26 °C and using two 60 W halogen lamps as the light source, positioned 15 cm between the sensor and the sample. The sensor used was the Ocean Optics (Florida, USA) model STS-VIS-L-50-400-SMA, which captured the reflectance of the seed sample at wavelengths between 450 and 824 nm. After readings from the hyperspectral sensor, the seeds were subjected to tests for water content, germination, first germination count, electrical conductivity, and tetrazolium. The data obtained were subjected to an analysis of variance and the means were compared by the Scott–Knott test at 5% probability, analyzed using R software version 4.2.3 (Auckland, New Zealand). The data on the physiological quality of the seeds of the soybean genotypes were subjected to principal component analysis (PCA) and associated with the K-means algorithm to form groups according to the similarity and distinction between the genetic materials. After the formation of these groups, spectral curve graphs were constructed for each soybean genotype and for the groups that were formed. The physiological quality of the soybean genotypes can be differentiated using hyperspectral bands. The spectral bands, therefore, provide important information about the physiological quality of soybean seeds. Through the use of hyperspectral sensors and the observation of specific bands, it is possible to differentiate genotypes in terms of seed quality, complementing and/or replacing traditional tests in a fast, accurate, and non-destructive way, reducing the time and investment spent on obtaining information on seed viability and vigor. The results found in this study are promising, and further research is needed in future studies with other species and genotypes. The interval between 450 and 649 nm was the main spectrum band that contributed to the differentiation between soybean genotypes of superior and inferior physiological quality.
Read full abstract