With global climate change and increasing environmental pollution, plants are facing increasingly severe abiotic stresses, such as drought, salinization and heavy metal pollution. These stresses not only affect plant growth and development, but also pose a threat to agricultural production and ecosystem stability. In order to adapt to these unfavorable environments, plants have evolved a series of complex response mechanisms, among which epigenetic regulation, as an important means of regulation, has gradually attracted the attention of researchers. By modifying gene expression without modifying the DNA sequence, epigenetic control uses a variety of techniques, including DNA methylation, histone modification, and non-coding RNAs (ncRNA). These mechanisms are crucial for plant responses to abiotic stresses and can significantly enhance plant resistance and adaptive capabilities. DNA methylation can enhance plant resistance by controlling the expression of stress response-related genes; histone modification can regulate plant physiological responses by altering the structure of chromatin and affecting the accessibility of genes; and ncRNAs, especially microRNAs and siRNAs, can regulate plant physiological responses by targeting the expression of stress response-related genes. In-depth study of the role of plant epigenetic regulation in abiotic stress response is of great theoretical and practical significance for improving crop resistance and ensuring food security
Read full abstract