Accurately modeling the system dynamics of autonomous underwater vehicles (AUVs) is imperative to facilitating the implementation of intelligent control. In this research, we introduce a physics-informed neural network (PINN) method to model the dynamics of AUVs by integrating dynamical equations with deep neural networks. This integration leverages the nonlinear expressive power of deep neural networks, alongside the robust foundation of physical prior knowledge, resulting in an AUV model proficient in long-term motion forecasting. The experimental results indicate that this method is capable of effectively extracting AUV system dynamics from datasets, exhibiting strong generalization capabilities and achieving robust long-term motion prediction. Furthermore, a model predictive control method is proposed, using the learned PINN as the predictive model to accurately track the closed-loop trajectory. This research offers novel perspectives on the dynamics modeling of AUVs and has the potential to be applied in other relevant research endeavors.