Depleted hydrocarbon reservoirs are considered as the most feasible option for CO2 geological sequestration and utilization. Most of the hydrocarbon reservoirs are naturally fractured. Simulation of fluid flow and heat transfer in these fractured formations remains a significant challenge in reservoir engineering. In this study, a dual-continuum model is developed to simulate integrated CO2 sequestration and CO2-circulated geothermal extraction in a fractured reservoir block in North Oman. The high-dimensional sensitivity of key parameters controlling CO2-brine flow and heat transfer in this matrix-fracture system is quantitatively evaluated by an efficient surrogate modeling approach. The surrogate models are constructed and validated based on a suite of physics-based model simulations. It is found that fracture permeability dominates the CO2 injectivity, storage, circulation and associated geothermal extraction. Response surface analysis shows that the flow area density between matrix-fracture and matrix block length controls the flux interaction between matrix and fracture formations. In contrast, the fracture aperture shows negligible influence in the dual-continuum modeling system. Particularly, sensitivity varying with locations on the response surface is analyzed for defined performance indicators.