Benthic species assemblages are groups of species that co-occur on the seafloor. Linking assemblages to physical environmental features allows for understanding and predicting their spatial distribution. Species identity and abundance are commonly quantified using a taxonomic approach to assess benthic diversity, yet functional traits that describe the behavior, life history, and morphology of a species may be equally or more important. Here, we investigate the biodiversity of five benthic species assemblages in relation to their habitat and environmental conditions in an Ecologically and Biologically Significant Area (EBSA) along Canada’s east coast, using both a taxonomic approach and biological traits analysis. Random Forest regression was applied to map spatial patterns of functional and taxonomic diversity metrics, including richness, Shannon index, and Rao’s quadratic entropy. We evaluate discrepancies between related taxonomic and trait measures, and the community-weighted mean of trait data was calculated to characterize each assemblage. Taxonomic and functional richness – representing the number of species and the species community volume in the trait space, respectively – showed similar spatial patterns. However, when considering diversity, which also accounts for the relative abundance and differences among species or traits, these patterns diverged. Taxonomically different assemblages exhibited similar trait compositions for two assemblages, indicating potential trait equivalencies, while one assemblage exhibited traits potentially indicating sensitivity to human activity. The taxonomic and functional metrics of richness and diversity were low close to the coast, which could be indicative of disturbance. Consideration of functional metrics can support spatial planning and prioritization for management and conservation efforts by assessing the sensitivity of traits to different stressors.