The mechanisms governing interactions among various natural organic matter (NOM) fractions and the subsequently impact on ultrafiltration process have not been systematically studied. In this work, bovine serum albumin (BSA), humic acid (HA), sodium alginate (SA) were applied as model NOM to explore the influence of the interactions among NOM on ultrafiltration process. Results indicated that tryptophan-like fluorescence fraction was the dominant reaction fraction of HA to react with SA and BSA. Different interactions among model NOM not only changed the interception order of fluorescence fractions by ultrafiltration from fulvic acid-like, humic-like and tryptophan-like in BSA/HA mixture to tryptophan-like, humic-like and fulvic acid-like in BSA/HA/SA/kaolin mixture, but also remarkably influence the membrane fouling behavior. In BSA/HA mixture, new-generated aggregates with molecular weight (MW) of 10 kDa could not pass though ultrafiltration membrane and mainly contributed to chemical reversible fouling. In BSA/HA/SA mixture, SA simultaneously reacted with BSA and HA to generate aggregates with larger MW which could be washed down by physical cleaning. In BSA/HA/SA/kaolin mixture, the aggregates with MW of 10 kDa and chemical reversible fouling were disappeared due to the adsorption role of kaolin. These findings could further improve our understanding regarding membrane fouling mechanisms of raw water with different components.
Read full abstract