The ability of viruses to emerge in new species is influenced by aspects of host biology and ecology, with some taxa harbouring a high diversity and abundance of viruses. However, how these factors shape virus diversity at the ecosystem scale is often unclear. To better understand the pattern and determinants of viral diversity within an ecosystem, and to describe the novel avian viruses infecting an individual avian community, we performed a metagenomic snapshot of the virome from the entire avian community on remote Pukenui/Anchor Island in Aotearoa New Zealand. Through total RNA sequencing of 18 bird species, we identified 50 avian viruses from 9 viral families, of which 96% were novel. Of note, passerines (perching birds) exhibited high viral abundance and diversity, with viruses found across all nine viral families identified. We also identified numerous viruses infecting seabirds on the Island, including megriviruses, hepaciviruses, and hepatoviruses, while parrots exhibited an extremely low diversity of avian viruses. Within passerines, closely related astroviruses and hepatoviruses, and multiple identical hepe-like viruses, were shared among host species. Phylogenetic reconciliation analysis of these viral groups revealed a mixture of co-divergence and cross-species transmission, with virus host-jumping relatively frequent among passerines. In contrast, there was no evidence for recent cross-species virus transmission in parrots or seabirds. The novel pegiviruses and a flavivirus identified here also pose intriguing questions regarding their origins, pathogenicity, and potential impact on vertebrate hosts. Overall, these results highlight the importance of understudied remote island ecosystems as refugia for novel viruses, as well as the intricate interplay between host ecology and behaviour in shaping viral communities.
Read full abstract