Taxonomy and phylogenetic relationships within the family Mactridae have remained debatable because of the plasticity of morphological characteristics and the lack of accurate molecular data, thereby resulting in abundant synonyms and taxa rearrangements. Mitochondrial genomes (mitogenomes) have been widely used as powerful tools to reconstruct phylogenies of various groups of mollusks; however, they have not been used for studying the phylogeny of mactrids specifically. In the present study, mitogenomes of seven Mactridae species, namely Mactra chinensis, Mactra cygnus, Mactra quadrangularis, Mactra cumingii, Mactrinula dolabrata, Raeta pulchella, and Raeta sp., were sequenced by Illumina high-throughput sequencing, and a comparative mitochondrial genomic analysis was conducted. The newly sequenced mitogenomes were double-stranded circular molecules, with all functional genes encoded on the heavy strand. All the new mactrid mitogenomes had two rRNA genes (12S and 16S), 13 protein-coding genes (PCGs) (atp6, cox1, cox2, cox3, cytb, nad1, nad2, nad3, nad4, nad4l, nad5, nad6, and atp8), and 22 tRNAs. The mitogenomes showed considerable variation in AT content, GC skew, and AT skew. The results of the phylogenetic analysis confirmed monophyly of the family Mactridae and suggested that genera Mactrinula, Spisula, Rangia, and Mulinia should not be placed under subfamily Mactrinae. Our results supported that potential cryptic species existed in Mactra antiquata. We also proposed subfamily Kymatoxinae should belong to the family Mactridae rather than Anatinellidae and Mactra alta in China should be Mactra cygnus. Additionally, conservation in functional gene arrangement was found in genera Mactra, Raeta, and Lutraria. But gene orders in S. sachalinensis and S. solida were quite different, questioning their congeneric relationship. Our results further suggested that the taxonomy within the family Mactridae requires an integrative revision.
Read full abstract