Rubus chingii is used as an important traditional Chinese medicine, and belongs to the family Rosaceae. The fruit has multiple pharmacological activities, including antioxidant, anti-inflammatory, and improving cognitive impairment (Na Han et al. 2012). In June 2019, a new fungal infection was observed on the leaves of R. chingii in Qiandongnan Miao and Dong Autonomous Prefecture, Guizhou Province, China, forming small lesions with reddish-brown edges along leaf veins. Over 500 plants were surveyed, and nearly 20% of the plants were symptomatic. The diseased plants grew poorly and appeared stunted, and severely affected plants died. Five symptomatic leaves were randomly collected from the field and washed with tap water and distilled water successively. The edges of infected leaf tissue were cut into small pieces (4 to 5 mm2), surface sterilized with 70% ethanol for 30 s and 0.1% HgCl2 for 1 minute, and then rinsed three times in sterile distilled water (Chen et al. 2016). The same fungus was isolated from 41 pieces. The hyphae of a representative isolate were gray, the colony surface was granular, the edges were uneven and white, and the culture turned black over time with black spherical conidia. Conidia were nearly elliptical, unicellular, and each with a hyaline, unstable apical appendage, 3 to 10 µm long. The size of conidia was 10 to 18 μm in length and 4 to 8 μm in width. These morphological characteristics are consistent with those described for the fungus Phyllosticta capitalensis. (Wikee et al. 2013). For an accurate identification, genomic DNA of a representative isolate of the pathogen was extracted to amplify the internal transcribed spacer (ITS) region, the transcription elongation factor (tefa-1), and actin (ACT) genes with the ITS1/ITS4, EF1-728F/EF1-986R, and ACT-512F/ACT-783R (Cheng, L. L. ,et al. 2019), respectively. The ITS, tefa-1 and actin gene sequences were deposited in GenBank and assigned accession numbers MW308365, MW714380 and MW714381, respectively. BLAST search analysis of GenBank (NCBI) showed that the sequences had 100% similarity with those of Phyllosticta capitalensis (GenBank accession no. ITS, MN548091; tefa-1, MN958711; and ACT, MN565575). The pathogenicity of Phyllosticta capitalensis was verified using six healthy detached leaves from healthy R. chingii plants around 40 cm tall. A total of nine plants were used, and three leaves from each plant were artificially inoculated. Each wound was inoculated with conidial suspension (106 mL-1), while the control leaves were coated by sterile water. All the treated plants were covered with plastic bags for 2 days, incubated at 28ºC and 85% relative humidity, with a 12-hour photoperiod. After 15 days following inoculation, the injured leaves showed similar symptoms to the above-mentioned lesions, while the control and uninjured leaves were still healthy. P. capitalensis were reisolated from inoculated leaves, fulfilling Koch's postulates. P. capitalensis is an endophyte, widely distributed in various host plants in China. (Lu, J. M, et al. 2016). To the best of our known, this is the first report of black freckle disease caused by P. capitalensis on Rubus chingii in China. P. capitalensis is a destructive plant pathogen with an unusually broad host range and our findings will be useful for its management and for further research. The author(s) declare no conflict of interest.
Read full abstract