The performance of commercial solar power plants degrades due to an increase in module temperatures for which standard PV-T air or water-cooling techniques are mostly used. In this study, a thermoelectric cooling system is studied for improving photovoltaic cell power efficiency and hence solar power generation. The cooling optimization requires solar cell temperature prediction of field operating PV modules, for which analysis of six models, is presented. The experimentation results show that TEC cooling maintains PV cell at 25 °C whereas PV cell without TEC operates at 55–63 °C, a higher temperature range, showing the effectiveness of the thermoelectric cooling system in precisely controlling PV cell temperature to operate at or near STC conditions in the field creating a temperature difference of 30–38 °C. The NOCT and Faiman model results are found close to the experimental values in comparison to other models. The potential for cooling and a corresponding increase in solar plant energy production is assessed using PV Syst modeling and simulation for three practical PV installation scenarios for 31 different climatic zone locations worldwide showing 6–27 % power loss due to elevated temperatures, which is not studied in previous studies adding novelty to the analysis. The results show that PV-TECS is an effective system to control the temperature of field operating PV modules, which can be used in future photovoltaic power plants. Field results and analysis of PV temperature models is crucial for the optimization and future development of PV-thermoelectric systems deployed under actual outdoor conditions as well as the expected cooling gains in different climatic locations. These aspects are collectively studied in the current work adding to the novelty of the study.
Read full abstract