A phthalimide-functionalized heptamethine cyanine dye, named Ph790H, is used for targeted photothermal cancer therapy in vivo. We highlight that the chemical structure of Ph790H is newly designed and synthesized for the first time in this study. By possessing a rigid chloro-cyclohexenyl ring in the heptamethine cyanine backbone, the bifunctional near-infrared (NIR) fluorescent dye Ph790H can be preferentially accumulated in tumor without the need for additional targeting ligands, which is defined as the "structure-inherent tumor targeting" concept. The phototherapeutic effect of Ph790H is evaluated in HT-29 human colorectal cancer xenografts to be used as a cancer-targeting photothermal agent. The results reveal that the Ph790H shows enhanced tumor accumulation in HT-29 xenografts 48 h post-injection with a high tumor-to-background ratio. After determination of the optimal timing for photothermal therapy (PTT), the HT-29 tumor-possessing nude mice pretreated with Ph790H are subsequently irradiated with an 808 nm NIR laser for 5 min. The tumor-targeted PTT treatment can efficiently inhibit the tumor development compared with that of control groups. Moreover, no tumor regrowth or Ph790H-induced mortality occurs after the treatment of Ph790H and laser irradiation during a period of monitoring. Therefore, this work demonstrates that the bifunctional phototheranostic agent Ph790H can be utilized for targeted cancer imaging and fluorescence-guided phototherapy simultaneously.
Read full abstract