Lichens are a mutualistic symbiosis between a fungus and one or more photosynthetic partners. They are photosynthetically active during desiccation until relative water contents (RWC) as low as 30% (on dry mass). Experimental evidence suggests that during desiccation, the photobionts have a higher hydration level than the surrounding fungal pseudo-tissues. Explosive cavitation events in the hyphae might cause water movements towards the photobionts. This hypothesis was tested in two foliose lichens by measurements of ultrasonic acoustic emissions (UAE), a method commonly used in vascular plants but never in lichens, and by measurements of photosystem II efficiency, water potential and RWC. Thallus structural changes were characterised by low-temperature scanning electron microscopy. The thalli were silent between 380% and 30% RWCs, i.e. when explosive cavitation events should cause movements of liquid water. Nevertheless, the thalli emitted UAE at approximately 5% RWC. Accordingly, the medullary hyphae were partially shrunk at about 15% RWC, whereas they were completely shrunk below 5% RWC. These results do not support the hypothesis of hyphal cavitation and suggest that the UAE originate from structural changes at hyphal level. The shrinking of hyphae is proposed as an adaptation to avoid cell damage at very low RWCs.