Transition Edge Sensors (TESs) are amongst the most sensitive cryogenic detectors and can be easily optimized for the detection of massive particles or photons ranging from X-rays all the way down to millimetre radiation. Furthermore, TESs exhibit unmatched energy resolution while being easily frequency domain multiplexed in arrays of several hundred pixels. Such great performance, along with rather simple and sturdy readout and amplification chains make TESs extremely compelling for applications in many fields of scientific endeavour. While the first part of this article is an in-depth discussion on the working principles of Transition Edge Sensors, the remainder of this review article focuses on the applications of Transition Edge Sensors in advanced scientific instrumentation serving as an accessible and thorough list of possible starting points for more comprehensive literature research.
Read full abstract