A theory of quantum damped oscillator with arbitrary time dependence of the frequency and damping coefficient, based on the Heisenberg-Langevin equations with delta-correlated stochastic force operators, is applied to the case of the dynamical Casimir effect in a cavity with a periodically photo-excited semiconductor boundary. Accompanying results for the mean number of created photons, its variance, and the photon distribution function are given. In the asymptotical regime, the field mode goes to the so-called superchaotic quantum state.