High energy supply is critical, particularly in developing countries, to maintain lifestyles as the world's population and technological-economic metropolis grow. Solar photovoltaic cells have been used as an alternative to generate renewable, sustainable, and green energy for the past two decades. In general, the materials employed in the photoanode part are critical to manufacturing high-efficiency solar cells with 14–18% efficiency. A simple and successful method has been discovered for creating a film composed of graphene sheets and 99.8% pure anatase titanium oxide (TiO2) nanoparticles. After sensitization, the films were tested as photoelectrodes for dye-sensitized solar cells. The experimental results show that using an optimized graphene material considerably improves the power conversion efficiency of the cells, resulting in a 45% increase in short-circuit current density ( JSC). This study uses capsician as a bonding agent to enhance the current density of a graphene–TiO2 based semi-organic solar cell. The mechanical and electrical properties of the cell are investigated using a scanning electron microscope, energy dispersive X-ray, and Corescan.
Read full abstract