Potassium (K+) has vital physiological and metabolic functions in plants and its availability can impact tolerance to biotic and abiotic stress conditions. Limited studies have investigated the effect of K+ fertilization on soybean metabolism. Using integrated omics, ionomics and metabolomics, we investigated the field-grown Glycine max (soybean) response, after four K+ soil fertilization rates. Soybean leaf and pod tissue (valves and immature seeds) extracts were analysed by ultra-performance liquid chromatography coupled to high-resolution mass spectrometry (UPLC-HRMS) and inductively coupled plasma optical emission spectroscopy (ICP-OES). Multivariate analyses (PCA-X&Y e O2PLS-DA) showed that 51 compounds of 19 metabolic pathways were regulated in response to K+ availability. Under very low potassium availability, soybean plants accumulated of Ca2+, Mg2+, Fe2+, Cu2+, and B in young and old leaves. Potassium fertilization upregulated carbohydrate, galactolipid, and flavonol glycoside biosynthesis in leaves and pod valves, while K+ deficient pod tissues showed increasing amino acids, oligosaccharides, benzoic acid derivatives, and isoflavones contents. Severely K+ deficient soils elicited isoflavones, coumestans, pterocarpans, and soyasaponins in trifoliate leaves, likely associated to oxidative and photodynamic stress status. Additionally, results demonstrate that L-asparagine content is higher in potassium deficient tissues, suggesting this compound as a biomarker of K+ deficiency in soybean plants. These results demonstrate that potassium soil fertilization did not linearly contribute to changes in specialised constitutive metabolites of soybean. Altogether, this work provides a reference for improving the understanding of soybean metabolism as dependent on K+ availability.