Abstract

BackgroundTo investigate the susceptibility of SH-SY5Y cells to DTPP-based photodynamic therapy (PDT) and the antagonistic effects of chrysophanol (Chr) on PDT. MethodsPDT photocytotoxicity to cells was quantified and determined by exposing increasing concentrations of DTPP between 2.5 to 20 μg/mL to radiation with energy densities of 1.2–9.6 J/cm2 at 630-nm wavelength. Sodium azide (SA, NaN3) and d-mannitol (DM) were employed to study the reaction type of PDT. The photodynamic stress after PDT was assessed by superoxide dismutase (SOD), malondialdehyde (MDA), and total antioxidative capacity (T-AOC) assays. The apoptosis pathway of SH-SY5Y cells after PDT was studied by the determination of JC-1 and caspase-9/Caspase-3 concentrations. MTT and double fluorescence staining assays were applied to study the effect of Chr on cell survival and apoptosis rate in PDT, respectively. PI was used to detect the effect of Chr on cell membrane integrity after DTPP-PDT treatment. ResultsThe dose-dependent killing effect of high DTPP concentrations and irradiation doses were identified. Cell apoptosis is mediated by a mitochondrial pathway with a total apoptosis rate of 33.8% at 10 μg/mL of DTPP after irradiation with 2.4 J/cm2. Oxidative stress was produced by ROS in PDT and non-reversible cell oxidative damage appeared due to the cells’ modulation of the oxidative stress balance during the PDT response. Chr had a- effect on ROS capture and an inhibitory effect on the PDT-induced destruction of cell membranes. ConclusionsSH-SY5Y cells were susceptible to DTPP-PDT, resulting in a mitochondrial apoptosis pathway. There is an antagonistic effect of Chr on PDT in SH-SY5Y neuroblastoma cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call