Hypoxia at the tumor site limits the therapeutic effects of photodynamic therapy (PDT) in oral squamous cell carcinoma (OSCC), which is an oxygen-consumption process. Inhibiting cellular oxygen consumption and reducing cellular ATP production are expected to enhance PDT. In this study, we designed and constructed dandelion-like size-shrinkable nanoparticles for tumor-targeted delivery of hypoxia regulator resveratrol (RES) and photodynamic agent chlorine e6 (CE6). Both drugs were co-encapsulated in small-sized micelles modified with EGFR targeting ligand GE11, which was further conjugated on hyaluronic nanogel (NG) to afford RC-GMN. After targeted accumulation in tumors mediated by GE11 and enhanced penetration and retention (EPR) effects, RC-GMN was degraded by hyaluronidase (HAase) and resulted in small-sized micelles, allowing for deep penetration and dual-receptor-mediated cellular internalization. Resveratrol inhibited cellular oxygen consumption and provided sufficient oxygen for PDT, which consequently activated PDT to produce reactive oxygen species (ROS). Notably, we found that autophagy was overactivated in PDT, which was further strengthened by the hypoxia regulator resveratrol, elevating autophagic cell death. The synergistic effects of resveratrol and CE6 promoted autophagic cell death and apoptosis in the enhanced PDT, resulting in stronger antitumor effects in the orthotopic OSCC model. Therefore, the facilitated delivery of hypoxia regulator enhanced PDT efficacy by elevating oxygen content in tumor cells and inducing autophagic cell death and apoptosis, which offers an alternative strategy for enhancing the PDT effects against OSCC.
Read full abstract