TiO2 is a catalyst that can effectively degrade organic pollutants with the following advantages, low cost, simplicity, and pollution-free nature. In recent years, the non-noble plasmonic metal Al has effectively improved the photocatalytic performance of TiO2. However, the current reports are limited to the photocatalytic performance of Al/TiO2 on the substrate, which requires expensive large-scale vacuum equipment. In this study, monodispersed Al particles were proposed to enhance the photocatalysis of TiO2. The localized surface plasmon resonance (LSPR) effect of Al is proven by finite difference time domain method (FDTF) simulation. Then, Al/TiO2 composites were prepared by combining monodispersed Al and TiO2. The influence of ligand (glutathione (GSH), glutamic acid (GAG), or 3-mercaptopropane acid (MPA)), Al size (40 to 300 nm), and the ratio of Al to TiO2 (0.5:1 to 10:1) on the photocatalytic degradation of methylene blue (MB) by Al/TiO2 were discussed. The obtained results showed that the Al/TiO2 composite which were prepared with 200 nm Al particles, GSH as the ligand bridge, and an Al:TiO2 ratio of 1:1 had the best MB degradation effect. It can degrade 97.7% of 10 mg/L MB in 100 min. The reaction rate of the Al/TiO2 composite with the optimal photocatalytic performance is k=3.36×10-2 min-1, which is 10 times that of P25 TiO2. In addition, Al/TiO2 has a good photocatalytic effect on rhodamine B (RhB) and crystal violet (CV). Therefore, Al/TiO2 composites with the advantage of high efficiency are a type of potential photocatalytic material that can be used for the photocatalytic treatment of organic pollutants in water.