The photocatalytic activity of photocatalysts can be enhanced by cation doping, and the dopant concentration plays a key role in achieving high efficiency. This study explores the impact of copper (Cu) doping at concentrations ranging from 0% to 10% on the microstructural, optical, electronic, and photocatalytic properties of zinc oxide (ZnO) nanostructures. The x-ray diffraction analysis shows a non-linear alteration in the lattice parameters with increasing the Cu content and the formation of CuO as a secondary phase at the Cu concentration of >3%. Density functional theory calculations provide insights into the change in the electronic structures of ZnO induced by Cu doping, leading to the formation of localizeddelectronic levels above the valence band maximum. The modulation of the electronic structure of ZnO by Cu doping facilitates the visible light absorption via O 2p → Cu 3d and Cu 3d → Zn 2p transitions. Photoluminescence spectroscopy reveals a quenching of the defect-related emission peak at approximately 570 nm for all Cu-doped ZnO nanostructures, indicating a reduction in the structural and other defects. The photocatalytic activity tests confirm that the ZnO nanostructures doped with 3% Cu exhibit the highest efficiency compared to other samples due to the suitable band-edge position and visible light absorption.
Read full abstract